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ABSTRACT

We give a short proof of a theorem of Lipton and Tarjan, that for every planar graph with n > 0 vertices, there is
a partition (A, B, C) of its vertex set such that | A |, | B| < % n,|C| £2(2n)"? and no vertex in A is adjacent to
any vertex in B. Secondly, we apply the same technique more carefully, to deduce that in fact such a partition
(A,B,C)exists with | A|, | B| < %n and | C| < %(Zn )% and this improves the best previously known result.

An analogous result holds when the vertices or edges are weighted.



1. THE LIPTON-TARJAN THEOREM

Our first objective is to give a short proof of the following theorem of Lipton and Tarjan [3]. (V(G) denotes the

vertex set of the graph G .)

(1.1) Let G be a planar graph with n > 0 vertices. Then there is a partition (A, B, C) of V(Gj such that

|Al,|B]| <%n, | C| S2\/5\/;,andnovertexinAisadjacenttoanyinB.

Proof. We may assume that G has no loops or multiple edges, that n > 3 and (by adding new edges to G) that G is
drawn in the plane in such a way that every region is bounded by a circuit of three edges. (Circuits have no
“‘repeated’” vertices.) Let k = [_‘/2_11_] . For any circuit C of G we denote by A(C) and B (C) the sets of vertices
drawn inside C and outside C, respectively; thus (A (C),B(C), V(C)) is a partition of V(G), and no vertex in

A(C) is adjacent to any in B (C). Choose a circuit C of G such that
V) <%
.. 2
@) | B(C)| < 3n
(iii) subject to (i) and (ii), | A(C)| - | B(C)| is minimum.
(This is possible, because the circuit bounding the infinite region satisfies (i) and (ii).)
We suppose, for a contradiction, that | A(C)| 2 %n . Let D be the subgraph of G drawn in the closed disc bounded

by C. For u,v € V(C), let c(u,v) (respectively, d(u,v)) be the number of edges in the shortest path of C

(respectively, D ) between u and v.
(1) c,v)=dw,v)forallu,v € V(C).

For certainly d(u,v)<c(u,v) since C is a subgraph of D. If possible, choose a pair u,v € V(C) with
d(u,v) minimum such that d(u,v) <c(u,v). Let P be a path of D between u and v, with d(u,v) edges.

Suppose that some internal vertex w of P belongs to V(C). Then
du,w)+dw,v)=d,v)<c,v)<cu,w)+c(w,v)

and so either d(u,w) < c(u,w) or d(w,v) <c(w, v), in either case contrary to the choice of u,v. Thus there is

2 .
nosuchw. Let C, C,, C, be the three circuits of C U P where | A(C,)| 2| A(Cp)|. Now | B(C))| < n,since



1
n=|BECI =|AC +|VCD| > 5 (AC)] +]ACH +IV®)| D=5 |4C)] 23 n.
But | V(C))| <|V(C)| since |E(P)| <c(x,v), and so C; satisfies (1) and (ii). By (iii), B(C1)=B(C), and in
particular ¢ (u, v) £ 1, which is impossible since d (u, v) < ¢ (4, v). This proves (1).
@ V()| =2.
For suppose that | V(C)| <2k. Choose e € E(C), and let P be the two-edge path of D such that the union of
P and e forms a circuit bounding a region inside of C. Let v be the middle vertex of P, and let P’ be the path C\e.

Now P # P’ since A(C)# D, and sov ¢ V(C) by (1). Hence P L P’ is a circuit satisfying (i) and (ii), contrary to

(iii). This proves (2).
Let the vertices of C be v, vy ..., Voi-1, Vax = Vo, in order.
) There are k + 1 vertex-disjoint paths of D between {vg, v1 ,..., Vi } and {Vi, Va1 roos Vai ).

For otherwise, by a well-known form of Menger’'s theorem for planar triangulations, there is a path of D

between vg and v, with < k vertices, contrary to (1).
Let the paths of (3) be Py, P, ..., Px, where P; hasends v;, vo—; (0<i <k). By (1),
|V(P:)| 2min(2i +1,2(k —i)+1)

and so

n=|VG) 2 T mini+1,20k-i)+1)2 5k +17.
0<i <k

. 2
Yetk+1> \’5 by the definition of k, a contradiction. Thus our assumption that | A (C)| 2 In was false, and so

|A(C)| < %—n and (A(C), B(C), V(C)) is a partition satisfying the theorem. B

2. SHIELDS

In the remainder of the paper, we use the same technique more carefully, to improve (1.1) numerically. A
2 . .
separator in a graph G is a partition (4,B,C) of V(G) such that |A|,|B| < 3 | V(G)| and no vertex in A is

adjacent to any vertex in B ; and its order is | C| . (1.1) therefore implies that any planar graph with n vertices has a

separator of order < 8"/2 n!2, and one might ask, what is the smallest constant A such that every planar graph with n




vertices has a separator of order <An'?? The Lipton-Tarjan result (1.1) asserts that A < 8'2 ~ 2.828. and this was
improved by Gazit [2], who showed that A < % =2.333. We shall give a further improvement, showing that

A<

o)W

21222121, Incidentally, the best lower bound known appears to be that of Djidjev [11, who showed that

A -;— VamV3 = 1.555 .

Actually we shall prove a slight strengthening, the following (and indeed, we shall prove an extension of (2.1)

when the vertices or edges have weights).

(2.1) Let G be a loopless graph with n vertices, drawn in a sphere Z. Then there is a simple closed curve F in X,
meeting the drawing only in vertices, such that nq + % ni, ny+ -;- n3<2n/3 and n3 < -;—(Zn)” 2 where F passes

through n vertices and the two open discs bounded by F contain n, and n, vertices respectively.

We shall be concerned with graphs drawn in a disc or sphere Z, and to simplify notation we shall usually not
distinguish between a vertex of the graph and the point of £ used in the drawing to represent the vertex, or between
an edge and the open line segment representing it. A subset of £ homeomorphic to the closed interval [0, 1] is

called an/-arc. If G is drawn in Z, a subset of  meeting the drawing only in vertices is G -normal.

The proof of (2.1) relies on the notion of a “‘k-shield”’. Let k >0. A k-shield (in A) is a loopless graph G

drawn in a closed disc A, such that
@) | V(G) n bd(A)| =k (bd(A) denotes the boundary of A)
(ii) bd (A) is G -normal, and

(iii) for every G -normal /-arc F ¢ A with ends x,y € bd(A), there is an I -arc F’ < bd (A) with ends x,y

such that | V(G) nF’| <|V(G)NF].

One can view the proof of (1.1) as consisting of two parts (omitting the reduction to G being a planar
triangulation, which is included only for convenience and can easily be avoided): roughly, we show that for any k,

every planar graph either has a separator of order < k, or has a subgraph which is a k -shield; and secondly, we show

that any k-shield has at least about % k2 vertices. Consequently, any planar graph with no separator of order < k

has at least about + & vertices, and (1.1) follows.




‘We shall improve this as follows. First, -:? is the wrong constant; we shall see that any k -shield has at least 715— k?

. 1. . . . .
vertices. (Z might not be the right constant either.) Secondly, with a little care we can confine ourselves to k-

shields in G which contain at most three-quarters of the vertices of G .

In this section we prove that any k-shield has at least % k* vertices, and some related lemmas; and these are

applied to prove (2.1) in the next section.

The proof of the mext result is due to A. Schrijver (private communication); our original proof was an

application of a currently unpublished theorem of Randby about graphs drawn in the projective plane [5], but

Schrijver’s proof is simpler.
(22) IfGisak-shield then | E(G)| 2 % k(k - 1).

Proof. We may assume that k¥ > 3, that G has no multiple edges, and that G is 2-connected, as is easily seen. It
follows that there is a circuit C of G, bounding a closed disc in A which includes all the drawing of G. Let the
vertices of G in bd(A) be v, ,..., vy, and for 1 <i <k let I; be the open line segment between v; and v;,; which is an
arc-wise connected component of bd (A) — (v, ,..., v} (Where v;,; means v,). For 1<i <k, let r; be the region of
G in A including /;. Then for 1<i <k, the boundary of r; consists of /; together with a path from C, while every
other region of G in A is an open disc, and is bounded by a circuit of G. Let us say a corner of G is a pair (v, r),
where v € V(G ) and r is a region of G in A incident with v. For any comer (v, r) there are precisely two edges of
G incident with both v and 7, unless 7 = r; and v = v; or v;,, for some i, when there is only one such edge. We call

any such edge an arm of the corner.

We wish to define a new graph G drawn in A. For each ¢ € E(G), let x, be a point of the open line segment
representing e in the drawing of G. For 1 <i <k, let a;, b; be distinct points of I;, so that v;, a;, b;, v;,; occur in

order. The vertex set of G’ will be

{alv b1:023b2 7---’aksbk} & {xe e € E(G)} .

The edges of G’ correspond to the corners of G. For each comer (v, r) with two arms e, f there is an edge of G’
with ends x, , xy, drawn within . For each corner (v, r) with one arm e, letr =r;; then if v = v; the corresponding

edge of G’ has ends a;, x,, while if v = v;,, it has ends b; x, , and in either case it is drawn within . This defines



G’, and its drawing. We see that every vertex of G” has valency 4 except for ay, b, ..., ax, by, which all have
valency 1. Moreover, each region of G in A either includes a (unique) vertex of G, or is a subset of a region of G

in A; and every edge of G’ is incident with one region of each type.

(1) Let F'cAbeanl-arc withendss,t € bd (A), not passing through any vertex of G’; and let F 1, F 5 be the two

I-arcs in bd(A) with ends s, t. Then the number of edges of G’ crossed by F’' is at least min(| F, nV(G")|,
| F2nV(GY)).

For we may assume (by rerouting F*) that F* N r is an open line segment or null, for every region r of G’ in A.
As we traverse F* from s to ¢ the regions of G we pass through correspond alternately to vertices and regions of G
and there is a G -normal /-arc F in A, passing through the same sequence of vertices and regions. Moreover, we
may assume that F and F’ have the same ends. Hence F passes through at least min(| F; AV (G)|,

| F2nV(G)|) vertices of G, since G is a k-shield; say | Fn V(G)| 2| F1nV(G)|. If both ends of F are in
V(G), then

|F'nE(G")| 22|F nV(G)| -222|F1nV(G)| -2= |Fin V(G
and a similar computation applies if one or neither end of F is in V(G). This proves (1).

Let usrenumber ay, by, az, b2 ..., Gy, bg @S $1, 52 1oy Sks E10 12 oy t respectively. From (1) and the result of [4]

it follows that
(2) There are k mutually edge-disjoint paths P ..., Py of G’ joining s; and t; (1 <i <k) respectively.

Since for 1<i < j <k,P; and P; have a common vertex (because they must cross somewhere) and this vertex

belongs to no other of the k paths, we deduce that G’ has at least % k(k — 1) vertices of valency 4. Consequently,

|E@G)| 25 k(k —1), as required.

A k-shield G in A is stable if for every I -arc L < bd(A) with ends x,y and with L "V (G)= {x,y}, there is

no edge e of G with ends x, y such that L U ¢ bounds a region of G in A,
(23) Ifk 23 and G is a stable k-shield then | V(G)| = ¢ k*+ 5 k + 1.

Proof. Let G be drawn in A. If some region of G in A is bounded by a two-edge circuit, we may delete one of

these two edges. By continuing this process, we may assume there is no such region.




Let the vertices of G drawn in bd(A) be vy,...,v; in order. Add to G a new vertex vy, edges with ends
vo, Vi (1< <k) and edges with ends v;, v;4; (1 £i <k) where v;,; means v;. We obtain a new planar graph G’ ,
with | V(G")| =|V(G)| +1 and | E(G")| =| E(G)| +2k. Moreover, G’ can be drawn in a sphere so that no
region has boundary consisting of a one- or two-edge circuit. Since |V(G’)| =3, it follows that
| E(G")| <3| V(G"| -6, and hence

lEG)| +2k <3(|V(G)| +1)-6.

Butby (2.2), | E(G)| 2 5 k(k — 1), and the result follows. M

Similarly, for k > 2 any k -shield has > —é— K2+ % k +1 vertices. We do not know if the term % k? here is best
possible.
(24) Let G be a graph drawn in a closed disc A, such that | V(G) n bd ()| =k and bd(A) is G-normal. Suppose

that for every G-normal I-arc F c A withends x,y € bd(A) and F nbd(A) = (x,y}, there is an I-arc F’ < bd(A)

withends x,y suchthat |F’ "V (G)| €| F nV(G)|. Then G is a k-shield.
Proof. For distinct x, y € bd(A), let
dx,y)=min(|FynV(G)|,|F,nV(G)])

where F, F, are the two I -arcs in bd (A) with ends x,y. We must show that [ F n VtG)I >2d(x,y) for every G-
normal I'-arc F ¢ A with ends x,y € bd(A). We may assume that F N bd(A) cV(G) U {x,y}, and we proceed
by induction on | F ~bd (A)— {x,y}|. If this quantity is zero the result follows from the hypothesis. Otherwise,
there exists z € (F — {x,y}) N bd(A), and z € V(G). Let F,F,cF be the I-arcs with ends x,z and z,y

respectively. From the inductive hypothesis, | F; " V(G)| 2d(x,z)and | F,nV(G)| 2d(z,y). But
|FAVG) =|FinV(G)| +|F2nV(G)| -1
and d(gt,y)sd(x,z)-r d(z,y)—1(since z € V(G)). The result follows. R

Let us say a strong k-shield is a graph G drawn in a closed disc A with | V(G) n bd(A)| =k and with
bd (A) G -normal, such that for every G -normal [-arc F < A with ends x,y € bd(A) and with F nbd(A) = {x,y]},

either



() there is an / -arc F* c bd (A) withends x, y such that | F* "V (G)| <|F nV(G)|,or
(ii) one of the two closed discs into which F divides A includes all of the drawing of G .

From (2.4) we see that every strong k -shield is a k -shield.

(2.5) Fork 23,if G isa strong k-shield then | V(G)| 2+ k?+ 2 k + =3

Proof. We may assume that G has no multiple edges. Since k > 3, it follows that no two vertices in bd (A) are
adjacent (for if an edge has both ends in bd(A) then we may choose F to violate conditions (i) and (ii) in the
definition of strong k -shield, with the same ends as e and otherwise disjoint but “‘next 0>’ e ). Let the vertices of G
in bd(A) be vy ,..., v in order. Letr be the region incident with v; and v (itis unique). Since G is a k-shield, r is
not incident with any of v, ..., vge—1. Let u #vy, v, be incident with r (this exists since V1, Vi are not adjacent).

Add a new vertex vi4 to G and an edge e with ends u, vi,q, forming G’. Draw v,y in r N bd (A), and draw e

within r — bd (A).
(1) G’isak + 1)-shield.

For let F c A be a G’-normal ] -arc with ends x,y € bd(A), and with F N bd(A) = {x,y}. Let F{, F be the

two I -arcs in bd (A) with ends x, y. We claim that
|F nV(G)| 2min(|FinV(G)|,|F2nV(G)]).
If| F nV(G)| >|F,nV(G)|, then our claim holds since
|FAV(G) 2|FAVG) 2|F1nV(G)| +12|FinV(G))| .

We assume then that | F N V(G)| <|F; nV(G)| fori =1,2. Since G is a strong k -shield, we may assume that
the closed disc in A bounded by F U F, includes the drawing of G. Hence F\NV(G)c F NV (G). vy & F,

then
- |FLnV(G)) =|FinV(G)| £IF nV(G)| <|F nV(G)

as required. If w4y € F), then either vi,y or u belongs to F (since u belongs to the closed disc bounded by

F U F,). In the first case v;4; =x ory, and so

|[FinV(G) =|F1nV(@G)| +1<|F nV(G)| +1<|F nV(G) .




Inthe secondcaseu € F NV(G)andu ¢ Fy N V(G), and so

[FinV(G) =|FinV(G)| +1<|F AV(G)| <|F V(G| .

This proves our claim that

|F nV(@G)| 2min(| FLnV(G)| ,IF2nV(GY)]).

Consequently, G is a (k + 1)-shield. This proves (1).

Certainly G’ is a stable (k + 1)-shield, and so from (2.3) we deduce that |VGH 2 %(k +1)72%+ %(k +D+1.

Since | V(G| =| V(G)| + 1, the result follows. B

3. THE MAIN ARGUMENT

In section 1 we were concerned with the problem of finding a small cutset, defined by a simple closed curve, so
that both sides of it contain about the same number of vertices. One can also give the vertices or edges weights, and
ask for a small cutset, defined by a simple closed curve, so that both sides contain about the same total weight. This

is a little more complicated; for instance, although the analogue of (1.1) holds (that is, 2(2n)"%), Gazit’s proof of
T 212 oes not extend, and up to the present 2(2n )" was the best known. However, we shall show in (3.9) that,
3

for any planar G and for any constant A > 2, if A n'2 works for the unweighted case then it also works for the

weighted case. In particular, our result of %(Zn )2 works for the weighted case.

A convenient common generalization of the different ways to assign weights to a planar graph is via
“‘majorities”’. Let G be a graph drawn in a sphere . A noose is a G -normal, simple closed curve F ¢ Z, and its
lengthis | F A" V(G)| . A majority of order k, where k >0 is an integer, is a function big which assigns to every

noose F of length < k a closed disc big (F) < X bounded by F, satisfying the following two axioms:

Axiom 1. If x,y € X are distinct, and F,, F,, F3 are G-normal I -arcs each between x and y and otherwise
disjoint, and F, U F,, Fy U F3, FoU F4 all have length <k, and big (F, U F,) includes F,, then big(F, U F3)

includes one of big (F| U F3), big (Fa L F3).

Axiom 2. If F is a noose with length <min(2, k), then either big(F)—F contains a vertex of G, or big (F)

includes at least two edges of G .




This is connected with the weighted separator problem via the next two results. R, denotes the set of

nonnegative real numbers; and if w : X — R, is a function and Y c X, wedenote Z(w(x):x € Y) by w(Y).

(3.1) Let G be a graph drawn in a sphere, let w - V(G) - R, be a function, and let k >0 be an integer. Suppose

that there is no noose F of length < k such that
w(@ ~F)NVG)+ 5 wF nVG)S 2 wV(G))

for both closed discs D bounded by F. Then G has a majority of order k.

Proof. For each noose F of length < k let big (F) be the (unique) closed disc D bounded by F such that
w(@ -F)nV(G))+ % w(iF nV(G)) > % w(V(G)).

The axioms may easily be verified. B

If G isdrawn in £and D c X is a closed disc with bd (D) G -normal, we denote the subgraph of G drawn in D
byG nD.

(3.2) Let G be a graphin a sphere, letw : E(G) >R, be a function, and let k 2 0 be an integer. Suppose that
Dw ()< 2 wEG)) foreach f € EG), and
(ii) there is no noose F of length < k such that w(E(G N D)) < % w(E(G)) for both closed discs D bounded

byF.

Then G has a majority of order k.
Proof. For each noose F of length <k, let big(F) be the unique closed disc D bounded by F with
w(E(G ND))> 2 w(E(G)). Again, the axioms may easily be verified. M
Let big be a majority of order k in G. A noose F is optimal if
(;) ithas length<k
(ii) subject to (i), G M big (F) is minimal, and

(iii) subject to (i) and (ii), | F N V(G)| is maximum.
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(3.3) Let G be a loopless graph drawn in a sphere X, let big be a majority of order k >0, and let F be an optimal

noose. Then G M big (F) is a strong stable k-shield in big (F).

Proof. Let|F nV(G)| =k’. We claim first that G M big (F) is a strong k ’-shield in big (F). For let big(F)=A,
let F3c A be a G-normal I -arc with ends x,y € F and with F3n F = {x,y}, and let Fy, F4 be the two arcs

between x,y in F. Suppose that
|F3nV(G)| <|F1nV(G),|F2nV(G)| .

Let A; c A be the closed disc bounded by F; UF3(i =1,2). We must show that one of Ay, Ay includes G N A.

Fori =1,2,F; UF3is a G-normal noose with length <k, since
| (F; UF3)nV(G) <|FnV(@G)| <k.

From axiom 1, we may assume that A; = big(F1 U F3). Since F is optimal, it follows that G N A =G N A, that is,

A, includes G N A, as required. Thus, G N big (F)is a strong k “-shield.

We claim that G M big(F) is a stable k’-shield. This is clear if k’ >3 because every strong k’-shield with
k’ 23 is stable, but needs proof if k' <2. Suppose that e is an edge of G N A with ends x,y € bd(A), and that
L c F isan]-arc withends x, y, such thate UL bounds a region of G in A. Let F3 € A be a G -normal / -arc with
ends x, y, just on the other side of e from L, in the natural sense. From axiom 2,big(FsUL) ¢ A, and so from

axiom 1, big (F3 L (F — L)) c A, contrary to the optimality of F. Thus G n A is a stable k’~shield in A.

Finally, we claim that k’= k. For suppose that k* <k and let 7 be a region of G NA in A with F nr #D.
Suppose that v € V(G N A) is incident with 7, and v ¢ F. Choose distinct x,y € r N F, and let F4 be an ] -arc
with ends x,y and F3nF ={x,y} and Fscr u {v}, passing through v. Since k£ >k’ 20 it follows that
| F1UF3)NV(G)| <1<k,where Fycr ~F isanl-arc between x,y,and | (F, U F3) N V(G)| <k’ +1<k,
where F,c F is the other /-arc between x,y. By axiom 2, big(FyUF3)¢ A, and so by axiom 1,

big (F2U F1) c A contrary to the optimality of F.

Hence, every v € V(G N A) incident with r belongs to F. Since G N A is a k’-shield it follows that r N F is
connected. If F Cr then r is incident with no vertex of G m Aand so G N A is null, contrary to the second axiom.
Hence r N F is an open line segment, with ends x,y € V(G). Since G N A is a k’-shield it follows that r is

incident with no vertex of G N A except x and y. In particular, x #y since G is loopless, and there is an edge of G
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with ends x and y, incident with . But this is impossible since G N A is a stable k -shield and 7 is incident with no

vertex except x and y. We deduce that k" =k, as required. W
Consequently, we have

(34) Let G be a graph in a sphere Z, and let big be a majority of order k > 0. For any noose F ¢ X of length <k,

V@) nbigF) 2 g2+ 2k + 2,

Proof. From the definition of optimal noose, there is an optimal noose F’ with G A big(FYc G nbig(F). We
claim that | V(G nbig(F"))| = % K2+ % k + % If k < 2 this follows from the second axiom (together with the
first if £ = 2), while for k 23 it follows from (2.5), since G nbig (F') is a strong k-shield by (3.3). Since
| V(G nbig(F))| 2| V(G nbig(F"))|, the result follows. W

Let us say a noose in G has discrepancy |ni—n,|, where it bounds closed discs A;,A, and

n;=|V(G)nA;| (i =1,2). We have immediately from (3.4) that

(3.5) Let G be a graph in a sphere £, with n vertices. There is a noose of length < 612 with discrepancy < = n.

W | -

Proof. Letk =|6Y?n'?| . If G has a majority of order k then by (3.4),
Ly 3pe251 2
| V(G)| 2cki+ck+T2zok+1)?>n,

a contradiction. Thus, by (3.1) (with w (v) = 1 for all v), there is a noose F of length < k£ such that the discs D, D,

bounded by F satisfy
|@:i-F)nV©G)| +5 1FnVG) <3 V6 (=12,
or, equivalently, that F has discrepancy < —;— n.
Actually, here the 612 is irrelevant; all we need from (3.5) is that some noose has discrepancy < % n.

3 R ,
(3.6) Let G be a graph in a sphere X, with n vertices. There is a noose of length < ?(2" W2 with discrepancy

1
< —
_2n.

Proof. We assume n > 0. By (3.5) there is a noose with discrepancy < % n. Let us choose such a noose F of
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minimum order, k say. Let F bound closed discs A, A’ with [V(G)nA| 2|V(G)n 4.

(1) G NnAisak-shieldinA.

For let F3 be a G -normal I-arc with ends x,y€F,and let Fy,F, be the two I-arcs in F with ends x,y.

Suppose that

|F nV(G)) <|F1r\V(G)|,|F2r\V(G)I .

Since
V@) n@-F)| +3 |V©G)nF| 22 n
because | V(G) N A| 2| V(G) N A’|, we may assume that
V@) N4~ F UFY)| +5 |VG)AF UF)| 24 n

without loss of generality, where A, is the closed disc in A bounded by Fy U F3. Butthen F, U F3 has discrepancy

< —;- n, and has order < k, contrary to the choice of F. This proves (1).

Now let us choose such F, A with E(G N A) minimal. It follows that G N A is a stable k -shield, and so by

2.3),

V(G naA) 2%k2+%k+1.

(for we may assume that k > -;— (2n)"2 since otherwise F satisfies the theorem, and % (2n)? 22 since n > 1, and

so k 2 3). Hence
VG na) 21 k2e Lpv1-1,
=6 2 2
since F has discrepancy < % n;and so
1 1 1
n+k=|V@G)| +|V(G)NF| =|V(G nA)| +| V(G na) 22(—6—k2+7k+1)—5n.
3 1,2 3 12 .
Itfollowsthat—inZ?k +2,andsok <_i'(2") ,asrequired. W

‘We deduce
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(3.7) Let G be a graph in a sphere T, with n vertices, and with a majority of order k. Thenk < %(Zn »2o1,

Proof. Let big be a majority of order k, and suppose that k > L-;—(2n )'2] . By (3.6), there is a noose F of length
<k with discrepancy < 3 n. By (3.4),
V@) nbigF)] 23 2+ 3k +2;
but
V@) +IVG)NF| 22|V(G) nbigF)| -+ n

since F has discrepancy < % n, and so

3 1,9
—_— > —
2n+k_3k+

w|w

k + —;— ,
sice |V(G)NF| <k. Hence J(k+1P+1<3n, and so k+1< 2@n)", a contradiction. Thus
k <| 22n)"2], as required. ®

From (3.7) and (3.1) we deduce our main result, the following weighted version of (2.1).
(3.8) Let G be a graph in a sphere with n vertices, and for each vertex v let w(v) 2 0 be a real number. There is a
noose Fwith| F nV(G)| < %(Zn Y2 such that

w(@ -F)nV(G)+5wF nVEG)< 2 wv(6))

for both closed discs D bounded by F.

Proof. Letk =L—2—(2n )2| . By (3.7), G has no majority of order k, and the result follows from (3.1). W

Similarly one can use (3.7) and (3.2) to deduce a -;-(Zn )¥2.separator result when the weights are on the edges.

Finally, let us show the following curiosity, which indicates that for finding "separating” nooses of length

<A n? where A>2, in some sense the unweighted case is the hardest.

(3.9) Let G be a graph in a sphere, with n vertices, let k 22n'? -1 be a integer, and suppose that there is a noose

F* of length < k such that
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@ -FHaVEG) +5 IF*avE) <2 |vE)
for both closed discs D bounded by F*. Then
() G has no majority of order k
(ii) for any functionw : V(G) — R, there is a noose F of length< k such that
w(D -F)nV(G)+ % wiF NnV(G)) < % w(V(G))
for both closed discs D bounded by F
(iii) for any function w : E(G) — R, such that w(f ) < % w(E(G)) for every f € E(G), there is a noose F
of length < k such thatw(E(G NnD)) < % w(E(G)) for both closed discs D bounded by F.
Proof. Suppose that big is a majority of order k. By (3.4),
V@) nbigF*) 22K+ 2k + 2.
But by the hypothesis,
|VG)nbigF)] -5 VG nF*| <.
Moreover, | V(G) N F*| <k, and so

2,5 2 _ <£
k+6k+3 k 3

1 1
6 2

thatis, (k + 1)>+3 <4n. Butk +12>2n"2 acontradiction. This proves (i), and (i) and (iii) follow from (3.1) and

(3.2) respectively. B
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